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SUMMARY 

A numerical procedure was developed to solve the two-dimensional and axisymmetric incompressible 
laminar boundary layer equations using the semi-discrete Galerkin finite element method. Linear 
Lagrangian, quadratic Lagrangian, and cubic Hermite interpolating polynomials were used for the finite 
element discretization; the first-order, the second-order backward difference approximation, and the Crank- 
Nicolson method were used for the system of non-linear ordinary differential equations; the Picard iteration 
and the Newton-Raphson technique were used to solve the resulting non-linear algebraic system of 
equations. Conservation of mass is treated as a constraint condition in the procedure; hence, it is integrated 
numerically along the solution line while marching along the time-like co-ordinate. Among the numerical 
schemes tested, the Picard iteration technique used with the quadratic Lagrangian polynomials and the 
second-order backward difference approximation case turned out to be the most efficient to achieve the same 
accuracy. The advantages of the method developed lie in its coarse grid accuracy, global computational 
efficiency, and wide applicability to most situations that may arise in incompressible laminar boundary layer 
flows. 

KEY WORDS Boundary Layer Flows Time-like Co-ordinate Space-like Domain Inviscid Tangential Velocity 
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INTRODUCTION 

Owing to the importance of boundary layer flow problems in engineering applications, researchers 
in the area are quite active at present as well as in the recent past. 

The most salient and historically the first similarity solution of the boundary layer equations 
is the Blasius flat plate solution' which appeared in 1908. Rather more general similarity solutions 
are those of Falkner and Skan,' Hartree' and others.2 In these methods the fluid viscosity must 
be constant and the outer inviscid flow field takes certain specific forms such as a power law, 
so that similarity is achieved. These requirements are relaxed in the yet more general formulations 
such as the Mangler-Levy-Lee transformation method3 or the Blasius series expansion method2 
which can model non-similar flows. The resulting transformed boundary layer equations are 
usually solved by a finite difference method or by a finite element method. Examples in these 
areas are found in the works of Bismarck-Nasr3 and Smith and C l ~ t t e r . ~  Even in these non-similar 
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solution techniques, the fluid viscosity cannot vary freely across the boundary layer in order for 
the solution technique to be applicable. These techniques yield quite accurate results for laminar 
boundary layer flows but cannot be extended to turbulent flows owing to the constraints laid 
upon the physical properties, i.e. the apparent viscosity is a strong function of the normal co- 
ordinate and, to a lesser extent, of the tangential co-ordinate in turbulent flows. 

A classical solution scheme distinct from the similarity methods and usually termed the 
momentum integral method assumes a form for the velocity profile inside the boundary layer; 
substitution of this profile into the integral form of the momentum equation results in an ordinary 
differential equation which can be solved easily. Pohlhausen's,' Thwaites',s and Head'ss methods 
belong to the class of momentum integral methods. A review of the existing boundary layer 
solution techniques reveals that the momentum integral type formulations are generally inaccurate 
compared to other laminar boundary layer solution techniques. Therefore, applications of the 
integral type methods to laminar boundary layer flows are quite limited. Nevertheless, the 
momentum integral type formulations are an important technique for turbulent boundary layer 
flows: this is due to its capability to incorporate simple turbulence models. 

Owing to the lack of generality and inadequacy of the methods described, emphasis has been 
upon developing solution techniques which are both accurate and extendable to turbulent 
boundary layer flows. Among these are those of Gibson and Rodi,6 Lynn and Alani,7 Baker' 
and Soliman and Lynn and Alani used a least squares finite element method to solve 
a class of incompressible laminar boundary layer flows. Gibson and Rodi used a finite difference 
method to solve a highly curved incompressible turbulent shear layer. Baker solved incompressible 
laminar and turbulent boundary layer flows over a flat plate by the semi-discrete Galerkin finite 
element method which is similar to the method developed in the present study. Soliman and 
Baker9*Io extended application of the method used by Baker' to turbulent boundary layer flows 
with pressure gradients and also presented some results on convergence study. All these methods 
solve the boundary layer equations using primitive variables, i.e. the unknowns are velocity 
components. One of the advantages of using primitive variables lies in its versatility to accom- 
modate discontinuous boundary conditions such as those arising in boundary layer control 
problems via suction or injection. It is believed that these three solution techniques and the present 
study can be extended to compressible turbulent boundary layer flows. In general, it is not 
appropriate to say which finite element method is more accurate since we can obtain as accurate 
a numerical solution as we wish, if the method is convergent, by refining the meshes until the 
round-off errors become dominant. Therefore, efficiency and versatility are of paramount 
importance when comparing different finite element methods. The present method has been tested 
against a number of incompressible laminar boundary layer flows. They flow over a 
flat plate, the retarded Howarth flow, flow over a wedge, plane stagnation flow, axisymmetric 
stagnation flow, flow over a circular cylinder, flow in the wake of a flat plate, a uniform suction 
flow on a flat plate, flow over a cone and flow over a sphere. Computational results compared 
favourably with results obtained by other investigators. A few of the computational results are 
presented herein. 

BOUNDARY LAYER EQUATIONS 

The incompressible laminar boundary layer equations are given as' 
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where (1) is a momentum equation, (2) is a conservation of mass equation, the co-ordinate 
system (x, y )  is defined locally such that the time-like co-ordinate x is tangential to the surface 
and y is normal to the surface of the submerged body, u and u are velocity vectors in the x and 
y directions, respectively, p is the density of the fluid, Ue(x) is the x-component velocity as y 
approaches infinity, r ,  is a radius of a body of revolution, m = 0 for the two-dimensional flow 
case, m = 1 for an axisymmetric flow case, and ( ),a represents differentiation of ( ) with respect 
to a. The shear stress for the incompressible laminar case is given as 

z y x  = P,,, (3) 
where p is the molecular viscosity of air. The boundary conditions for both flow cases are 
given as 

u(x, y )  = 0, at y = 0, (4) 

v(x,y)=v,, at y=O,  ( 5 )  

u,,(x, y )  = 0, as y-+ GO. (6) 
A characteristic of boundary layer flows is the extremely small viscous layer thickness which 

is order of 1/JR, where R is the Reynolds number defined as U,L/v and u/Ue=0.99 is 
customarily used to define the boundary layer thickness, L is the characteristic length in flow 
direction, and U ,  is the reference velocity. For computational convenience, we introduce a set 
of co-ordinate transformations and non-dimensionalization parameters. Setting 2 = x/L, j = 
y JRIL, li = u/U,v^= uJR/U, l e  = U e / U ,  and P, = r,/L in equations (1)-(6), and deleting 
the superscript ( A ) for notational convenience yields 

Note that the forms of the boundary layer equations are independent of the Reynolds number. 
It is found that u , ~  = 0 is equivalent to u -+ U e  as y approaches infinity. We used u,~” = 0 in our 
finite element analysis and found that the pressure gradient term, UeUe,, developed the external 
inviscid velocity in close agreement with the prescribed external inviscid velocity distribution 
along the flow direction. Since the boundary layer equations are defined on an infinite domain, it is 
necessary to set up a finite domain for our numerical analysis. The computational domain in the 
direction normal to the surface is taken to be several boundary layer thickness apart from the 
surface of the submerged body. 

FINITE ELEMENT EQUATIONS 

The boundary layer equations are parabolic, partial differential equations in the direction 
tangential to the surface. Based on the similar parabolic nature of the boundary layer equations 
to the standard parabolic, partial differential equations arising in the mathematical description 
of a class of time-dependent physical problems, such as heat conduction problems, we propose 
to solve the boundary layer equations by the semi-discrete finite element method in which the 
direction normal to the surface is discretized by a number of finite elements and the time-like 
direction remains continuous. Therefore, the proposed scheme takes the form of initial-boundary 
value solution techniques. The required initial conditions are different depending upon the inter- 
polation polynomials used as well as the difference approximations employed. Owing to the way 
the initial conditions are used in the iterative solution procedure, they are discussed in a separate 
section. 
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The standard semi-discrete Galerkin finite element method can be found in References 13, 14 
or 15. We simply state the results here. The semi-discrete finite element equation for the momentum 
part of the boundary layer equations for both of the two-dimensional and the axisymmetric cases 
is obtained asll 

(9) Aijzij + B i j ~ j  + Kijuj - Fi = 0, 

where 

= ( ' k 4 k ) b i 4 j  dy, s: 
Bij = ( v k 4 k ) 4 i 4 j , ~  dy, s1 1 

K..=  rJ So 4i,y$j,y dy, 

I 

Fi = UeUe,,4i dy 

and the superscript ( ' ) denotes the derivative of u in the time-like direction; the ujs denote 
nodal degrees of freedom for u for the Lagrangian interpolation case, and u and u , ~  for the Hermite 
interpolation case; the vjs denote nodal degrees of freedom for v; the 4s are the global basis 
polynomials; and (y ly~(0 ,  I ) >  denotes the space-like domain. In equation (9) the global finite 
element equations were derived using the global interpolating polynomials for convenience in 
developing the theory. But in computer implementation, the finite element matrices are derived 
for each element and then assembled to obtain the global equations. The conservation of mass 
equation is treated as a constraint condition and integrated numerically along the solution line 
as we proceed in the tangential direction. The nodal values of the normal velocity component 
become 

0 

isyJ A k 4 k  dy - rt(x)v(x, Yj) /r$(x) ,  I (10) V ( X ,  Yj) = 
Y J - 1  

where A, denotes (r:u),, at nodal points. The integration in equation (10) was evaluated 
using the Gauss quadrature rule.13 

FINITE DIFFERENCE APPROXIMATIONS 

The system of first-order non-linear ordinary differential equations, (9), derived through 
the semi-discrete Galerkin finite element formulation, is also defined on the same locally 
orthogonal curvilinear co-ordinates on which the boundary layer equations are defined. There 
exist several systems of ordinary differential equation integrators; multi-step forward difference 
methods, multi-step backward difference methods, the Crank-Nicolson method, the Runge- 
Kutta method, and modified versions of these methods. These are discussed in detail by Zlatev 
and Thomson' with regard to accuracy, efficiency and stability. In the computational experi- 
ments, they tested these systems of ordinary differential equation integrators by applying them 
to a system of ordinary differential equations derived through a semi-discrete Galerkin finite 
element formulation of a linear transient heat conduction equation. They showed that the Crank- 
Nicolson method is not attractive, owing to the enormous error encountered especially when 
the matrices are stiff and the step sizes are large. They also showed that the multi-step backward 
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difference method was the best system of ordinary differential equation integrators, for the problem 
considered, owing to its efficiency, accuracy and irrelevance to the stability requirernent.I6 

In boundary layer calculations, one needs to use an extremely line mesh near the separation 
region to better estimate the separation point, whereas, in the accelerating region, a coarse mesh 
can be used for computational efficiency. Therefore, any method which requires an extremely 
fine mesh to achieve convergence does not seem appropriate for boundary layer calculations. 
Also, the propagation nature of the momentum equation in the time-like direction is not as simple 
as in the transient heat convection-diffusion equation, since the derivative of the tangential velocity 
in the time-like direction is coupled with the tangential velocity itself. 

We choose to test the multi-step backward difference approximation method and the Crank- 
Nicolson method in the present study. The one-step difference approximation and the two-step 
difference approximation are considered for the multi-step backward difference case. As shown 
in the following discussions, any higher order difference approximation in the flow direction can 
be easily incorporated into the formulation. 

For the one-step difference approximation, we can write the derivative of the nodal degree of 
freedom, uJ,  in the time-like direction as 

where the superscripts n and n - 1 represent the present and the one-step previous line-levels, 
respectively, and Ax is the mesh size in the one-step difference approximation. Equation (1 1) 
applies for both of the Lagrangian and the Hermitian interpolation cases. Substituting equation 
(1 1) into equation (9) yields: 

For the two-step approximation, we can write 

where the notations used are the same as in equation (11). Substituting equation (13) into 
equation (9) yields 

where the notations used are the same as in equation (1 1). 
For the Crank-Nicolson method,16 we use the approximations that 

Substituting equations (15) and (17) into equation (9) yields 
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where Ai j  and B,, given in equation (9), are evaluated using equations (15) and (16), 
respectively, and the notations used are the same as in equation (1 1). Incorporating initial condi- 
tion data and the boundary conditions into equations (12), (14) or (18) completes the system of 
non-linear algebraic equations to be solved for the nodal unknowns. 

INITIAL CONDITION DATA AND INITIAL GUESS 

One needs to provide the initial condition data to be used in equations (12), (14) or (18). For 
the Lagrangian interpolation case, the tangential velocity data are required: and for the Hermitian 
interpolation case, both the tangential velocity data and the normal direction derivative of the 
tangential velocity data are required as initial condition data. In the numerical procedure 
developed herein, the conservation of mass equation is treated as a constraint condition. Therefore, 
initial condition data for the normal velocity component are not required to start the iteration, 
which is an advantage of the present method. 

For the one-step difference approximation and the Crank-Nicolson cases, initial condition 
data are needed on the starting line; and, for the two-step difference approximation case, the 
initial condition data are required on two starting lines. If the initial condition data were prepared 
from an experiment, then the one-step difference approximation method can be used to prepare 
the data on the second line. But the optional approach requires an assurance that the one-step 
difference approximation method yields an accurate and convergent solution. The convergence 
natures of both difference approximation methods are proved through computational experi- 
ments. 

Picard and Newt~n-Raphson '~ iteration techniques were used to solve the algebraic equations 
(12), (14) or (18). 

For the present boundary layer study, we use the solutions on the previous line-level (equivalent 
to time-level for transient problems) as the initial guess for the working line-level. 

To facilitate initial condition data preparation, the initial condition data for the normal velocity 
are set equal to zero, which amounts to setting Bij equal to zero in equations (12), (14) or (18) 
at the starting of the iterative solution procedure. In this approach, the number of iterations is 
increased only by 1 or 2 at the very beginning of the computation. As soon as we pass through 
the first solution line, then the usual initial guess procedure is resumed. Therefore the total number 
of iterations throughout the whole solution procedure is not significantly affected. 

REGRID 

In most boundary layer flows, the boundary layer thickness grows along the flow direction. 
Therefore, it is necessary to expand the computational domain in the normal to the surface direc- 
tion to take into account the growing boundary layer thickness. The domain in the normal to 
the surface direction was expanded about 35 per cent whenever u(x, 1)/Ue(x) became less than 
a prescribed value at the outer edge of the computational domain, where Ue(x)  is the flow direction 
inviscid velocity. u(x, l ) /Ue(x)  equal to 0.99988 (or 0.999) was used in the present study. The 
tangential velocity data on the expanded portion of the domain was set equal to Ue(x) ,  but the 
normal velocity data are not required for the reasons discussed previously. 

A regrid scheme was used to discretize the resulting expanded domain, in which the total number 
of nodes and the total number of elements remain constant. The nodal velocity components 
and their derivatives inside the unexpanded domain were obtained by interpolating the solutions 
on the line. Another possibility of expanding the domain in the normal direction is to add more 
elements and nodes for the expanded portion of the domain as has been used by Lynn and 
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Alani.7 On the other hand, Soliman and Bakerg3” assumed that the boundary layer thickness 
is a function of tangential co-ordinate and incorporated it into the finite element equation itself. 
For real application problems, e.g. boundary layer flow over an aerofoil, boundary layer thickness 
grows steadily under favourable pressure gradient and rapidly under adverse pressure gradient, 
and it is usually unknown until the problem is solved. For versatility in application and for 
computational efficiency, the regrid scheme was used in the present work. 

CONVERGENCE STUDY 

The theory of convergence and accuracy of the finite element method is well established 
for linear elliptic or linear parabolic partial differential equations. However, it has not yet been 
fully studied for other types of partial differential equations, especially for non-linear partial 
differential equations. 

In linear parabolic, partial differential equations, the error estimate can be performed separately 
for the semi-discretization part of the finite element formulation in the space domain and the 
difference approximation part in the time domain.” But the boundary layer equations are non- 
linear parabolic partial differential equations in the flow direction. In the present formulation, 
the discretization error in the time-like domain is fed back into the semi-discretization procedure 
of the space-like domain through the normal velocity calculation, equations (9) and (10). Also, 
the boundary layer equations are defined on an infinite domain. Hence, the extent of domain 
used in the numerical analysis will also affect the computational results. Therefore, the prior 
error estimate for linear parabolic partial differential equations cannot be applied directly to 
the present problem. Computational experiments on convergence behaviour are included in the 
example problems and discussed in the summary and conclusions. 

CONVERGENCE CRITERIA 

The non-linear algebraic system of equations was solved by the Picard and the Newton- 
Raphson iteration techniques until the convergence criteria were satisfied. There exist a number 
of convergence criteria one may choose to use. For the present work, we used the convergence 
criterion that 

where p denotes the iteration level for the solution vector ujs on the working line-level. A 
variable and its derivative have different order of convergence rates. Therefore, it would be reason- 
able to use different convergence criteria for the Hermite interpolation case and the Lagrangian 
interpolation case, if the same grid systems were used for both of the cases. There, E = 0000001 
was used as the convergence criterion for the Hermite interpolation case, and E = 00000001 for 
the Lagrangian interpolation case, unless otherwise specified. 

COMPUTATIONAL EXPERIMENTS 

The example problems presented herein are flow over a flat plate, a retarded Howarth 
flow, flow over a circular cylinder and flow over a cone. Since the major purpose was to investigate 
the uses and the advantages of the method developed, exhaustive study of each example flow 
was not attempted. Instead, the most important feature of any boundary layer study, is .  evaluation 
of the wall shear stresses to estimate the overall skin friction of the submerged body, was exhaus- 
tively investigated using different meshes for each of the six schemes. A complete set of computa- 
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tional experiments can be found in Reference 11; only representative results are presented 
herein. The computational experiments presented herein were made on IBM 4341 machine at the 
University of Texas at Arlington. 

Flow over a f la t  plate 

The flat plate flow was used to study the convergence nature of the method and the 
effect of regrid on accuracy. Even though an exact solution does not exist, Blasius’2 similarity 
solution can serve as an exact solution for the present study. 

Consider a flat plate whose chord is 0.2 m submerged in a uniform flow of 40 m/s at an angle 
of attack of zero degrees. Throughout the computational experiments, the kinematic viscosity 
of air is taken to be 1.46073 x l o w 5  m2/s, the sea-level standard value. Setting the reference length 
to be 0.1 m yields the computational reference Reynolds number of 2.396 x lo5. Usually, transition 
from laminar to turbulent flow on a flat plate occurs near a Reynolds number of 5 x 10’. Hence, 
this considers the largest usual Reynolds number for laminar flow over a flat plate. We calculate 
the boundary layer flow between x = 0.1 m (mid-chord) and x = 0.2 m (trailing edge) by the method 
developed. The initial velocity data were obtained from the Blasius’ similarity solution. 

Table I shows the required number of iterations and the computer time used, to satisfy the 
same convergence criteria of E = 0000001, for the different numerical schemes. For all the cases 
in Table I, computation begins at x = 0 1  m (or i? = 1.0) It is found that the Newton-Raphson 
technique requires as many iterations and as much computer time as the Picard iteration technique 
for the Lagrangian interpolation case, and that the former technique is more efficient than the 
latter for the Hermite interpolation case. Nevertheless, the least amount of the computer time 
was required for the case of Lagrangian interpolation used with the Picard iteration technique. 
The coupling effect of the conservation of mass equation in the solution procedure seems to 
damage the quadratic convergence nature of the Newton-Raphson method. 

In Reference 16 it was found that the Crank-Nicolson method was not so attractive, owing 
to enormous errors for a stiff system of ordinary differential equations. In the present work, the 
Crank-Nicolson method is found to be not attractive owing to the enormous number of iterations 
and the amount of computer time required. In the rest of the computational experiment, emphasis 
is laid on the Lagrangian interpolation with Picard iteration case; therefore the Crank-Nicolson 
method and the Newton-Raphson method are pursued no more. 

For notational convenience, the superscript ( A ) is omitted in the following. The global con- 
vergence behaviour was studied using the mean square error norm of the tangential velocity com- 
ponent defined as 

C f  

where uh represents the finite element solution, uref represents the Blasius solution and IR 
represents the computational domain in the normal direction. The mean square error norms 
shown in Figures 1 and 2 are evaluated at x = 1.25. 

It is found in Figure 1 that the lower bound on convergence is determined by the grid size, 
Ax, and the order of difference approximation in the time-like co-ordinate as well as by the inter- 
polation scheme in the space-like domain. For a linear parabolic problem, the lower bound will 
be determined by the discretization error in the time-like co-ordinate alone. Different lower bounds 
for different interpolation schemes in the space-like domain may have been caused by the feedback 
effect of the discretization error in the time-like co-ordinate into the semi-discretization procedure 
of the space-like domain through the normal velocity calculation. However, the differences 



Table I. Convergence study 

Difference 
Iteration method Approximation method Ax Iriy* Itire+ Timei 

2 11 1.37 

3 17 5.32 
0.125 

First-order back- 2 8 1.16 
ward difference 0.02 - 

(BD), method 3 11 3.92 

2 7 1.06 
0.0 1 

3 14 4.54 

2 11 154 

3 18 6.13 

Second-order 2 8 1.28 
BD method 0.02 

3 14 5.1 I 

Picard iteration method 

0.125 

.___ 

2 7 1.13 

3 13 4.8 1 
___ -_ 0.01 

2 10 1.45 

3 10 4.72 

First-order 2 7 1.36 
BD Method 0.02 

3 5 3.09 

0.125 

.___ 

2 6 1.07 

3 4 2.58 

2 10 1.79 

3 10 5.4 1 

0.01 

Newton-Raphson method ___- 

0.125 

Second-order 2 7 1.44 
BD method 0.02 

3 4 2.90 
_ _ _ ~  

2 6 1.20 

3 4 2.78 

2 39 4.04 

___- 0.0 1 

0'02 3 39 14.73 

Newton-Raphson method Crank-Nicolson 2 36 4.94 
methods 0.0 1 

3 36 14.38 

2 32 3.4 1 

3 32 12.20 
0.005 

*Interpolation rule, 2 for quadratic Lagrangian and 3 for cubic Hermite interpolation polynomial 
'Required number of iterations 
:Does not include the pre-processor time 
$The method diverged for Ax = 0.125 
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Figure 1. Convergence study;- : A x  = 0.125,--- -: Ax = 0.01; 0; linear, A :  Quadratic, V: Hermite element cases for 
one-step difference approximation; 0:  linear, A: quadratic, V: Hermite element cases for two-step difference 

approximation 

between the lower bounds become smaller as the grid size, Ax, becomes smaller. The quadratic 
Lagrangian and the first-order Hermite interpolation cases have nearly the same lower bound 
on convergence, whereas the bound for the linear element case is considerably larger than the 
other two interpolation cases. Figure 2 shows the effect of regrid upon convergence. It is found 
that the rate of convergence is not degraded by the regrid but the lower bound for convergence 
increases slightly after the regrid. Figures 1 and 2 also show that the convergence rates are quite 
different from those predicted by the finite element theory for linear parabolic problems. Another 
observation from Figures 1 and 2 is that the Hermite interpolation cases quickly approached 
the lower bound. Smooth, physically meaningful solutions were obtained beginning with only 
four elements in the space-like domain, as shown in Table 11. Coarse grid inaccuracies, as was 
reported by Soliman and Baker,’ were not observed in the present work. The required number 
of iterations for the Hermite interpolation case was about twice that of the Lagrangian interpola- 
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Figure 2. Effect of regrid on convergence; ~ : no regrid, -----: regrid; Rest of the legends are the same as in Figure 1 

tion case. The computer time required to generate each data point in Figures 1 and 2 ranged 
from two seconds, for the three Lagrangian element case, up to 25 seconds, for the one hundred 
Hermite elements with the first order difference approximation case. These computer times include 
data input, node generation, element generation, solution procedure, and the post-process. 
Computer time, to obtain a convergent solution for a data point, was less than four seconds for 
most of the cases. The number of iterations to achieve convergence for the first-order difference 
approximation method was about twice that of the second-order difference approximation method 
for all the cases. 

Retarded Howarth f low 

A boundary layer flow with a linearly retarded inviscid flow, which can occur on the 
aft portion of a certain aerofoil, was first studied by Howarth” using a series expansion method. 
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T a b l e  11. Coarse  grid solut ions for the flow over  a flat plate  

D a t a  1* D a t a  2' Blasius 
Y 

U U aU iaY  U C?uidy 

0 0  0~0000 0~0000 0.2932 0~0000 0.2970 
- 0.4381 1.5 0.4372 __ __ 

3.0 0.7879 0.7885 0.1778 0.7891 0.1763 
4.5 0.9563 - __ 0.9570 __ 
6.0 0.9966 0.9958 0.0069 0.9958 0.0075 
7.5 0.9997 - 0.9997 __ 
9.0 0.9999 0.9999 0~0000 0.9999 00000 

10.5 0.9999 ___ __ 0.9999 - 
12.0 0.9999 0.9999 0. 0.9999 0~0000 

6 1.928 1.926 1.925 
0 07487 0.7428 0.7435 

0.3204 0.2943 0.2970 C f  
/ I  U / lo 0.0147 0.001817 
Itire 12 20 
Time 0.41 s 0.86 s - 

*Four quadratic Lagrangian elements case 
'Four cubic Hermite elements case 
Data 1 and Data 2 are solutions at  x = 1.25 obtained by using the second order difference approximation. 
Computer time does not include pre-processor routine such as data input and element data generation. 

__ 

-- 

- 
- 

The inviscid tangential velocity outside of the boundary layer, on the physical domain, is given 
as 

Ue(x) = b,( 1 - x/l), (21) 
where b, is the uniform upstream velocity and 1 is the length of the flat plate. 

Consider a flat plate of length 1 m with a linearly retarded inviscid flow, the uniform upstream 
velocity of which is 35 m/s. Taking the reference length L to be 0.125 m and the reference velocity 
U ,  to be 35 mjs yields the computational Reynolds number of 2.995 x lo5. Non-dimensionalizing 
equation (21) yields 

o e  = 1 - 218, (22) 
where o e  = Ue(x)/U,  and 2 = x / L  are the non-dimensional velocity and tangential co- 
ordinates, respectively. For notational convenience, the superscript ( ) is omitted in the follow- 
ing. The initial velocity data were obtained using Howarth's series expansion s01ution.l~ Since the 
boundary layer thickness grows rapidly in the flow direction, the computational domain in the 
normal direction was expanded and regrided in the solution procedure. To cope with the retarded 
inviscid flow and to locate the separation point more precisely, a variable grid size was used in 
the flow direction. The plot of convergence history for the retarded Howarth flow was almost 
the same as the flow over a flat plate case." Among the six numerical schemes tested with several 
different grid sizes," Lagrangian interpolation with second order difference approximation case 
yielded the most accurate and efficient results. Wall shear stresses evaluated by using 17 quadratic 
Lagrangian elements and second-order backward difference approximation with variable grid 
size in the flow direction; Ax  = 0.02 for x < 0.9 and A x  = 0.001 for x < 0.957, are compared with 
those obtained by other investigators. The solution obtained by using 25 quadratic Lagrangian 
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Table 111. Wail shear stress for the retarded howarth flow 

Present analysis 
Bismark- Smith and Lynn and 

x Howarth Nasr3 Clutter4 Alari' Data 1* Data 2' 

0.10 
020  
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.92 
0.94 

2.739 
1.772 
1.309 
1.01 1 
0.790 
0.6 13 
0.459 
0315 
0.163 

__ 

2.7295 
1.7714 
1.3108 
1.0129 
0.791 1 
0.6101 
0.4544 
0.3072 
01470 
0.1075 
0.0723 

- 

1-7713 

1.0106 
__ 

- 

__ 
0.3 16 

0.128 
- 

- 

__ 
1.7354 
1.2337 
0.9296 
0.7269 
0.5544 
0.3034 
02636 
0.1 148 
0.0786 
0.960 

- 

1.7935 
1.3149 
1.0077 
0.78 12 
0.5987 
0.4405 
0.2909 
0,1216 
0.0740 

__ 
1.7713 
1.3130 
1.0148 
0.7944 
0.6155 
0.4608 
0.3 176 
0.1 649 
01286 
0.0854 

x3ep 0.96 0.950 0.960 0.9577 0.940 0.961 

Wall shear stress represent &(?ujay)/h; where o^u/o^y is evaluated on the physical co-ordinate 
* First-order difference approximation case 

elements with first-order difference approximation is also shown in Table 111. The latter case 
overestimated the tangential velocity near the wall, hence larger wall shear stress, and under- 
estimated the same velocity at the outer edge of the boundary layer, which caused early separation. 

Second-order difference approximation case 

Flow over a circular cylinder 

In the flow over a circular cylinder, the boundary layer separation causes a broad wake 
at the rear of the cylinder so that the inviscid velocity distribution is quite different from that 
of potential theory. The inviscid velocity distribution according to potential theory is given as' 

Ue(8) = 2U, sin 8, 

Ue(0) = 21/,(1.8140 - 0.2710d3 - 0.047105), 

(23) 

(24) 

whereas the same distribution due to the experiment by Hiemenz' is given as 

where 8 is the angle measured in radians from the forward stagnation point. In the experi- 
ment, Hiemenz tried to keep the flow laminar as far as possible toward the rear of the cylinder. 
The radius Reynolds number was 9500 and the separation point was observed at about 80.5" 
from the forward stagnation point. 

Both theoretical and experimental cases of the inviscid velocity distributions were considered 
in the present work. 

Consider a circular cylinder of radius 0.27 m submerged in a uniform flow of 053 m/s, so that 
the resulting radius Reynolds number would be approximately 9800. Taking the reference length 
scale to be 1 m and the reference velocity to be the uniform upstream velocity yields the computa- 
tional reference Reynolds number to be 3.64 x lo4. The initial velocity data at  5" from the forward 
stagnation point were obtained using the two-dimensional boundary layer flow near a stagnation 
point. The computed wall shear stresses are compared with other solutions in Table IV, where 
25 quadratic Lagrangian elements and a second-order backward difference approximation with 
variable grid size in the flow direction was used for both of the cases. 
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Table IV. Wall shear stresses for the flow over a circular cylinder 
~~ 

Experimental Ue Analytical Ue 

Smith and 
0 deg Data 1* Clutter4 

10 
20 
30 
40 

.50 
60 
70 
75 
79 
79.3 
79.5 
80 
90 

100 
102 
103 
1 04 
104.2 
104.35 

1.2278 
1.21 19 
1.1828 
1.1240 
1,0539 
0.9 196 
0.6740 
04574 
0.1394 
0.0927 
0.0479 
- 
__ 
__ 
- 
__ 
__ 
- 

- 

Data 2$ 

1.2273 
1.2106 
1.1827 
1.1419 
1.0860 
1.0155 
0.9 1 29 

- 

- 

- 
___ 
- 

0.7808 
0.5958 
0.3028 
0.2121 
0.1558 
0.0788 
0.0563 
0.0334 

Terril' 

1.23 
1.21 
1.19 
1.14 
1.06 
1.02 
0.9 1 
- 

- 
__ 
- 
0.78 
0.59 
__ 
- 

- 
- 
__ 
__ 

7965 80 104.55 104.5 

Wall shear stresses represent au/O?y J(vx) /Ue"5 where all the variablesareevaluated on 
the physical co-ordinates 
*AH = I for 0 < 65, 0.2 for 0 < 71, and 0.05 for H < Brep 
'AH = 1 for 0 < 60, 0.2 for B < 100, and 0.05 for R < Hsep 

Table V. Wall shear stresses for the flow over a cone 

X-FEM Data I* Data 2' F.S.% 

0.22 1.2016 1.2007 1.2002 
0.30 1.0530 1.0525 1.0520 
0.38 0.9523 0.95 18 0.9514 
0.46 0.8778 0.8775 0.8772 
0.50 0.8472 0.8469 0.8467 

The wall stresses represents &lay on the FEM-computational co- 
ordinates 
*25 quadratic Lagrangian elements with second-order difference 

'25 quadratic Lagrangian elements with first-order difference 

' Falkner-Skan similarity solution 

approximation. Ax = 0.02, Regrid at x = 0.16 and 0.30 

approximation Ax =0.01, Regrid at x = 0.15 and 0.28 
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Flow over a cone 

Consider a boundary layer flow over a cone with half angle equal to 19.10" and axis 
aligned parallel to the undisturbed upstream flow direction. The inviscid velocity distribution 
of the surface of the cone is given as1 

Ue(x)  = U ,(x/L)", 
where U ,  is a constant, x is the distance measured from the forward stagnation point along 
the surface of the cone, and n = 0.05 when the half cone angle is 19.10". The relationship between 
the cone angle and the exponent n is given in Reference 1. 

Let U = 15 m/s, x vary from 0.1 m to 0.5 m, and the reference length L be 1 m. Setting the 
reference velocity, U,, to be 15m/s yields the computational Reynolds number of 1.03 x lo6 
and the non-dimensionalized inviscid velocity as 

Oe(2) = 2'"' (26) 
The initial velocity data were obtained from the Falkner-Skan similarity solution. 

in the flow direction in Table V. 
The wall shear stresses are compared with the Falkner-Skan similarity solution at five locations 

SUMMARY AND CONCLUSIONS 

A numerical procedure for boundary layer flows was developed using the semi-discrete 
Galerkin finite element method. The versatility and the convergence nature of the method were 
verified by computational experiments. 

Convergence study showed that the Picard iteration technique was as good as the Newton- 
Raphson method for the Lagrangian interpolation case. It seems that the best solution technique 
depends on the physical problem to be solved and the other numerical factors used in the pro- 
cedure. The convergence study also showed that the lower bound on convergence was deter- 
mined not only by the discretization error in the time-like co-ordinate but also by the interpolation 
scheme used in the space-like domain. Also the convergence rates for each interpolation scheme 
were not comparable to those predicted by the linear theory. This convergence nature, different 
from the linear theory, is considered to be due to the feedback effect of the discretization error 
in the time-like co-ordinate into the semi-discretization procedure of the space-like domain 
through the normal velocity calculation. The lower bounds were almost the same for the quadratic 
Lagrangian and the first-order Hermite interpolation cases, but the lower bound was considerably 
larger for the linear Lagrangian element case. Therefore, the linear element was not suitable for 
boundary layer equations under the present formulation. 

Coarse grid inaccuracies were not observed in the present study. The Hermite interpolation 
case yielded the most accurate solution for coarse grids. But, since the Hermite interpolation 
case required more iterations than the quadratic Lagrangian case for the same number of degrees 
of freedom, and hence longer computational time, and both have almost the same lower bounds, 
the quadratic Lagrangian element was found to be more practical for applications. 

In general, the backward difference approximation is not suitable to study vibration of a class 
of dynamic systems since it introduces numerical viscosity and hence tends to yield optimistic 
results. This undesirable effect was not observed in the present study. The first-order difference 
approximation case overestimated the wall shear stresses and underestimated the tangential 
velocity near the outer edge of the boundary layer. Hence it predicted early separation. 

On the other hand, the second order difference approximation case yielded a smaller lower 
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bound for the same grid size in the time-like co-ordinate. It also required fewer iterations than 
the first order difference approximation case. Among the several schemes tested, the quadratic 
Lagrangian element with the second-order backward difference approximation case was found 
to be more suitable for boundary layer equations than other schemes. 

The regrid scheme, to cope with non-uniformly growing boundary layer thickness and to 
achieve computational efficiency, did not damage the convergence rate, but it slightly degraded 
the lower bound. 

The computational results obtained by the present method compared favourably with solutions 
obtained by others. Considering the accuracy, efficiency, and the versatility, the method deserves 
to be extended to a wider class of boundary layer flows such as transient, compressible and 
turbulent cases. 
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